/
POST /predict-api/predict/extraction
POST /predict-api/predict/extraction
As of Version | product version 2021 Autumn | component version 0.3 |
---|---|
Request Method | POST |
Response Format | JSON |
Description | Retrieves metadata extraction predictions for the binary content files of multiple objects identified by their The endpoint will return a JSON structure containing a list of |
Request Header | Content-Type: application/json X-ID-TENANT-NAME: tenant_name |
Request Example | /predict-api/predict/extraction/da20c2fb-8071-45e9-b4bf-2af376cdf9b6 { "objects": [{ "properties": { "system:objectId": { "value": "cdc7095f-a5ce-486d-92a7-6d0955d969ee" }, "appName": { "value": "AIInvoice" } } }, { "properties": { "system:objectId": { "value": "da20c2fb-8071-45e9-b4bf-2af376cdf9b6" }, "appName": { "value": "AIInvoice" } } }] } |
Result Example | { "predictions": [{ "properties": { "appAIInvoice:aiiCompanyName": [ { "value": "Lufthansa", "probability": 99.24, "boundingBox": [ 403, 729, 61, 14 ], "page": 0 }, { "value": "AKG Thermotechnik International GmbH & Co.KG", "probability": 93.24, "boundingBox": [ 413, 224, 93, 14 ], "page": 1 } ], "appAIInvoice:aiiIssueDateTime": [ { "value": "2018-01-26T15:21:170Z", "probability": 85.12, "boundingBox": [ 213, 234, 76, 14 ], "page": 1 } ] }, "system:objectId": { "value": "cdc7095f-a5ce-486d-92a7-6d0955d969ee" }, "predictionId": 1065 }, { "properties": { "appAIInvoice:aiiCompanyName": { "value": "Mercedes", "probability": 83.11 }, "appAIInvoice:aiiIssuedDateTime": { "value": "2009-10-12T14:05:020Z", "probability": 97.14, "boundingBox": [ 313, 424, 73, 14 ], "page": 0 } }, "system:objectId": { "value": "da20c2fb-8071-45e9-b4bf-2af376cdf9b6" }, "predictionId": 1066 }] } |